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Motion of a bore over a sloping beach 

By H. B. KELLER, D. A. LEVINEAND G. B. WHITHAM 
Institute of Mathematical Sciences, New York University 

(Received 29 May 1969) 

The results of numerical calculations are presented for the motion of a bore over 
a uniformly sloping beach. The shallow water equations are solved in kite  
difference form, and a technique is developed for fitting in the bore at each step. 
The results are compared with the approximate formula given by Whitham ( 1958) 
and close agreement is found. The approximate theory is considered further here; 
the main addition is a rigorous proof that, within the shallow water theory, the 
height of the bore always tends to zero at the shoreline. 

1. Introduction 
This paper gives an account of numerical solutions of the shallow water 

equations for the motion of a bore on a uniformly sloping beach. In a previous 
paper (Whitham 1958), an approximate formula was derived for the variation in 
the strength and height of the bore. The predictions were seen to contain specially 
interesting features, one of the main ones being that the height of the bore always 
tends to zero as it approaches the shoreline. Indeed, in the earlier account these 
predictions were viewed with a certain amount of suspicion, even though checks 
of the analogous theory in certain problems of gas dynamics show extremeIy high 
accuracy. Subsequently, it was realized that the predicted behaviour is correct? 
(within the shallow water theory at least) and the result that the bore height ten& 
to zero at the shoreline can be proved rigorously. This proof, together with 
recapitulation and further discussion of the approximate method, is given in $2. 

The numerical investigation confirms the previous results completely. In fact 
the agreement is quite remarkable; the differences are of the same order as the 
probable errors in the numerical work. In addition to this check, the numerical 
solution provides the full details of the flow behind the bore; these were not 
obtained previously. Furthermore, the solution is found for various starting 
conditions whereas it is rtssumed in the approximate theory that the bore is 
initially moving with constant speed and height in water of uniform depth. For 
these other starting conditions, it is found that the solutions eventually settle 
down and follow the approximate formula; the appropriate choice of the arbitrary 
constant factor in that formula varies considerably with the starting conditions 
for the same initial bore strength, but the functional dependence near the shoreline 
is the same. A similar insensitivity to the detailed initial conditions is well known 
for the analogous problem of the converging cylindrical shock in gas dynamics. 
The numerical results are discussed in detail in 5 4. 

t In thia connexion we are grateful for discussions with G. F. Carrier and H. P. 
Greenepan. 
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For this problem, it wa.s decided to develop a numerical method which uses fixed 
equal space intervale rather than the characteristics method which is not well 
suited to machine calculations. Stable ways of differencing the equations me well 
known, and the only question is how to fit in the bore at each step. This requires 
special care, but the method adopted here seems to be satisfactory in every 
respect. The details of the numerical scheme are given in $3. It is planned to 
extend this method for usein the analogous shock-waveprob1emsinga.sdynamics. 

2. Approximate formula and behaviour near the shoreline 
If h(x, t )  = ho(z) + ~ ( x ,  t )  denotes the depth of the water, where ho(x) is the 

undisturbed depth ahead of the bore, and u(z,t) is the particle velocity, the 
equations of the shallow water theory are 

7, + {(ho + 7) .>x = 07 

14&+uux+g~, = 0. 
The bore conditions are 

h - h  
u=--ou, 

h 

(3) 

(4) 

where U is the bore velocity. Along a positive characteristic it is readily found 
from (1) and (2 )  that 

Sdho du+2&-- = 0 
U+C 

on 
ax 
- u + c ,  z-  

where c = d(gh).  The approximate formula may be derived by applying the 
differential relation ( 5 )  to the flow quantities immediately behind the bore. Since 
these quantities are given in terms of U by (3) and (4) we have, then, a differential 
equation for U a.s a function of ho. The arbitrary constant in the integration is 
fixed from the initial value of U. 

This simple rule and its motivation are discussed in detail in the previous paper 
(Whitham 1958). It has not been justified in general, although it is easily shown 
to be the correct answer in a linearized perturbation theory for the effects of small 
changes in the depth on a bore initially moving with constant speed in a uniform 
region. In the linearized theory, the coefficient (u + c)-l in ( 5 )  is replaced by its 
unperturbed value (ul + cl)-l say. Then ( 5 )  can be integrated to 

gAh0 
Ul+% 

A u + ~ A c - -  = 0, (7) 

where Au, Ac, Aho denote the perturbations u - ul, etc. ; the right-hand side of (7) 
is set equal to zero since all the positive characteristics C+ come from the initial 
uniform region in which Au = Ac = Aho = 0 (see figure 1). Since the combination 
in (7) vanishes on each characteristic, it follows that it vanishes everywhere. In 
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particular, therefore, it applies to the flow quantities just behind the bore. 
Substituting from the bore conditions we have a relation of the form 

f (U,)AU = Aho (8) 

for the change in bore speed AU = U - U, in terms of the change in depth Ah,. 
This result is exactly the linearized form of the above rule. The more general form 
of the rule corresponds to replacing (8) by the differential equation 

dU f ( U ) - =  1. 
ah0 

(9) 

From this point of view, the rule would be expected to hold if the depth varies 
sufficiently slowly even though the total change in depth is not small. But it turns 
out to be much better and applies equally well to quite extreme cases. This will be 
seen in the results presented in this paper. 

t 

r y  

FIUUEE 1. The (2, t) diagram for the case u, < c,. 

In  substituting the bore conditions into (5 )  to get a differential equation 
corresponding to (9), it  is convenient to work with M = U/J(gh).  In  terms of M ,  
we have 

On substitution --i (5) ,  the following equation for M as a function of ho -J obtained: 

(11) 
1 dho - ( M +  1) ( ~ - 4 ) 2 ( ~ 3 + ~ 2 - ~ - 4 )  - - - -4  

ho dM ( M  - 1) (M2 - 4) (M4 + 3M3 + M2 - - 1)' 

The range of M is 1 < H < 00, weak bores corresponding to small values of ( M  - 1) 
and strong bores to large values of M .  I n  this range, the right-hand side of (1 1) is 
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always negative so that ill increaaea monotonically as h, decreases. However this 
is not true of the height r ] .  When M - 1 is small, ( 1  1 )  is approximately 

l d h ,  4 1 -__ = --__ 
h,dM 5 M - 1 '  

and it gives M- 1 cc h;t, 7 cc h,$. (12) 

Whereas, when M is large, we have 

4 
M cch& 7  hi. 1 dh, 

= -2, (13) 

This is the result noted earlier that the bore height tends to zero when h, + 0. For 
weak bores, 7 increases as h, decreases, but for strong bores r]  decreases with hW 
Thus in the beach problem, if r]  is initially less than the critical value 0-6262 h, (see 
the determination below), the height first increases and then ultimately decreases 
with a maximum at some intermediate position; at the maximum r]/h, = 0.6262. 
If r]/h, exceeds this value initially, the height decreases all the way to the shoreline. 
The bore velocity U has a similar change in behaviour, but at a different critical 
value given by r]/h, = 2.076, U/J(gho) = 2.504. If U < 2-504,/(ghO) initially, 
U first decreases, but then ultimately increases to a Mte value at the shoreline; 
at the minimum U/J(gh,) = 2-504. If U > 2-5O4J(gh0) initially, U increases all 
the way to the shore. 

The result that r]  + 0 as h, -+ 0 is surprising at first sight and certainly the 
validity of the rule might be suspected in this extreme limiting case. However, an 
independent proof can be given aa follows : 

First, from the bore conditions (3) and (a),  the bore height r ]  must tend to zero 
with h, if u is to remain finite. We now show that u must remain kite. For 
a uniformly sloping beach we may take ho = a(zo-z), where a is the slope and 
z = z, is the shoreline. Then, the characteristic relations (5) and (6 )  give 

du + 2dc + agdt = 0 i.e. u + 2c + agt = constant, (14) 

on a positive characteristic. Thus, if u -+ co at the shoreline, u + 2c + agt + 00 

at all points of the characteristic which reaches the bore just at the shoreline. This 
is clearly impossible in the solution of our problem. (It should be noted that if 
u+m, U+co so the bore reaches the shoreline in finite time.) Therefore, 
u remains finite as h, + 0; hence, from the bore conditions, 7 --f 0. It is interesting 
to note that this method of fixing the behaviour near the shore, by the absence of 
a singularity on the characteristic, is completely analogous to the method for 
determining the exponent in Guderley 's similarity solution for the converging 
cylindrical shock (see the discussion in Whitham (1958)). 

Therelation (14) canbewritteninafurtherconvenientformifweassumethatthe 
depth is uniform in x < 0 and that the bore is initially moving with constant speed 
in that region. The (z, t )  diagram is shown in figure 1 for the case when the initial 
constant values u = ul, c = c1 behind the bore are such that u1 c cl. Then the 
flow is undisturbed to the left of the negative characteristic z = (ul - cl) t shown 
as C- in the figure. If u1 > c1 the flow is undisturbed with u = ul, c = c1 in x < 0 

20 Fluid Mech. 7 
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until a refleatad bore appeara. In  the absence of such secondary bores (which 
would modify the result somewhat), we have from (14) 

U + 2 C  + @ = U*(7) + 2C*(T) + q, 
where t = 7 is the time when the characteristic crosses x = 0 and u*, c* are the 
corresponding values of u and c .  But, u + 2c is constant on the characteristic in 
x c 0 since h, = constant, therefore u* + 2c* = u1 + 2c1 and we have 

u+2c+ag( t -7)  = u1+2c1. (16) 

M 
1.01 
1-02 
1-03 
1.04 
1.05 

41.126 
1-08 
1.1 
1.146 
1.2 
1.3 
1.428 
1.5 
2.0 

3.0 
3.6 
4-0 
5.0 
6.0 
7.0 
8-0 
10.0 
20.0 
00 

46 

:= f ( M )  

6.360 
3.006 
2-124 
1.649 
1.350 
1.130 
8.696 x 10-1 
6.988 x 10-' 
4.733 x 10-1 
3.342 x 10-1 
2.055 x 10" 
1.286 x 10" 
1.028 x 10-1 
3.308 x 
1.602 x lo-* 
7.909 x lod 
4.637 x lod 
2.916 x lo4 
1-335 x lod 
6.992 x lo4 
4.023 x lo4 

1.094 x lo4 

0 

2.480 x 104 

8.058 x 104 

1 
A 

0.2156 
0.2429 
0.2686 
0.2692 
0.2767 
0.2826 
0.2894 
0.2935 
0.2964 
0.2941 
0.2836 
0.2668 
0.2570 
0.1985 
0.1602 
0.1265 
0.1043 
0.0875 
0.0641 
0.0489 
0.0386 
0-0312 
0.02 17 
0.0064 
0 

- U 

2.385 
1.839 
1.590 
1.440 
1.339 
1.261 
1.163 
1.096 
1.005 
0.951 
0.909 
0.898 
0.900 
0.962 
1-028 
1.100 
1.155 
1.203 
1.279 
1.337 
1.383 
1.420 
1.476 
1.606 
1.763 

m) 
0 

Jo 
2.361 
1.802 
1.543 
1.385 
1.276 
1.188 
1.077 
0.996 
0-877 
0.793 
0.699 
0-629 
0.600 
0.481 
0.420 
0.367 
0.330 
0.301 
0.266 
0.223 
0.198 
0.177 
0.148 
0.080 
0 

21 

J(gA) 
0.092 
0.137 
0.173 
0.202 
0.228 
0.262 
0.290 
0.324 
0.387 
0-445 
0.627 
0.606 
0.643 
0.825 
0.936 
0.036 
1-106 
1.164 
1.253 
1.318 
1.368 
1-408 
1-468 
1-603 
1.763 

TABLE 1. Calculatiom from approximate formula for bore motion: general A 

From this form it is immediately obvious that u remains bounded since all terms 
on the left are positive. However, this form is limited to the particular case of an 
initially uniform bore and the earlier argument is more general. With this result 
that u remains bounded, the bore conditions (3) and (4) show that h and 7 are 
proportional to hi aa h, + 0. It should also be noted that the particle velocity u 
and the bore velocity U approach the same limiting value when h, + 0. 
Turning to the details of the solution given by (1 l), we see that the maximum 

of 7 O C C W ~  when _ -  dM " - 2(M2-  l )+4hON- = 0. 
ah0 ah0 
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The value of M is found to be 1.146, and from the bore conditions the corre- 
sponding r ] ,  etc. are 

Maximum 7: M = 1.146, v/ho = 0.6262, U/J(gho) = 1-461,) 
u G 

0.5627, - - a) = J(gh,) - 1*275' 

(In the earlier paper (Whitham 1958), M was taken erroneously to be approxi- 
mately 1-2 and this led to a large error in 7/ho). The minimum bore speed occurs at 
a larger value of M ;  we have : 

Minimum U :  M = 1.428, v/h, = 2-076, U/d(gh,) = 2-504,) 

u C 
- 1.690, - - m- ,/(gh,) - 1'754' 

41.125 
1.08 
1.1 
1.146 
1.2 
1.3 
1-428 
1-5 
2.0 
4.0 
8.0 
00 

1~0000 
0.7696 
0.6184 
0.4189 
0.2957 
0.1819 
0.1137 
0.0910 
0-0293 
0.0026 
0-0002 
0 

0.2500 
0.2561 
0.2697 
0.2623 
0.2602 
0-2510 
0.2361 
0.2275 
0-1757 
0*0774 
0-0276 
0 

1.186 
1.094 
1.031 
0.946 
0.896 
0.865 
0-844 
0.846 
0.906 
1.131 
1.336 
1.659 

1.118 
1.013 
0.937 
0.826 
0.746 
0.658 
0.591 
0.664 
0.453 
0.283 
0.167 
0 

0.237 
0.273 
0.305 
0.364 
0.419 
0.496 
0.670 
0.605 
0.776 
1-095 
1.326 
1.669 

TABU 2a. Calculations from approximate formula for bore motion: 
A = 0.8850, N(0) = 0.25 

J6 
3-0 
3-5 
4- 0 
6-0 
6.0 
7-0 
8.0 
10.0 
20.0 
00 

l*ooOO 
0,4936 
0.2894 
0.1820 
0.0833 
0.0436 
0.0251 
0.0155 
0.0068 
0*0005 
0 

10.000 
7.897 
6.511 
6.469 
3.998 
3.055 
2.410 
1.950 
1.352 
0.401 
0 

8-12 
8.69 
9.13 
9.50 
10.10 
10.56 
10.92 
11.22 
11.66 
12.68 
13-93 

3.317 
2-897 
2.608 
2.376 
2.020 
1.760 
1.560 
1.402 
1.166 
0-634 
0 

7.39 
8.18 
8-74 
9.19 
9-90 
10.41 
10.81 
11.13 
11.60 
12.66 
13.93 

TABLE 2b. Calculations from approximate formula for bore motion: 
A = 62.41, N(0) = 10.0 

Equation (1 1) integrates to 

(19) 
(M2 - +) exp (al tan-l (M + u,)/u.& h, = A 

( M  - l)* ( M  - u4)= (M2 + u p  + U,)P ( M  + u,)Y ' 
20-2 
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where A is a constant of integration to be determined from the initial strength 
of the bore, and 

a, = 0.2808, a2 = 0.6769, a3 = 0.3179, a, = 0.7471, a6 = 1.354, 

a, = 0.5593, a, = 2.393, a = 1.180, ,8 = 1.173, y = 1.673. 

The flow quantities at  the bore are determined from equations (10); their values 
are given in table 1. For a given strength of bore initially, M is determined from 
the bore conditions and then A is determined from (19). The results for q/h0 = 0.26 
and 10 initially are given in tables 2a and 2b. They are discussed in detail in Q 4. 

3. Numerical method 
It is assumed that the beach has slope a, starts at x = 0 and has the shoreline 

at x = zo; the depth is constant and equal to mo in z f 0. We introduce the 
dimensionless quantities : 

where ho(0) = oxo. In terms of these variables 

The shallow water theory equations (l), (2) can now be written as 

HT+ (Hv)x  = 0, 

V T  + +(@)x + H x  = 4 x 9  

and the bore conditions (3), (4) become 

= JH(Ho+H),  2=0 

v = y+) v. 
(24) 

The numerical procedure is, in outline, to compute the flow quantities behind 
the bore on a set of net points (X i ,  Tk) by means of finite difference approximations 
of (22) and (23). The bore quantities and its propagation between net points are 
computed from a special set of difference equations which include the bore 
conditions (24) and (25), and couple the flow variables at the bore to those behind 
it by means of the equations of motion. Of course this procedure assumes that 
the initial state contains a bore and in its present form is not capable of treating 
problems in which bores develop. 

In detail the spatial net is chosento be uniform, Xi = iAX,  for convenience, and 
the time net, Tkfl = Fk+ATk, must then satisfy the stability condition stated 
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below. If f;k is the position of the bore at  time Tk, we let x&) be that net point for 
which 

At all net points Xi < Xd, the flow quantities are computed from the difference 
forms of (22) and (23) (see figure 2a):  

xdk) f;k < xs(k)+l- 

xi < 0, 

- +AT,, xi = 0, { ITk, xi > 0. Th.m GW 
Tk Tk 

xi-1 xi Xi+l XI-1 xs xs+1 
FIUURE 20. Mesh pointa for 

differencing the equations. 
FIUURE 2b. Mesh points for 

fitting in the bore. 

(27) 

These equations are obtained from (22), (23) by replacing the T-derivatives by 
forward differences and the X-derivatives by centred differences. If in the 
T-differences the average values + [ H ( E )  + H(Q‘)], etc., are replaced by the actual 
values H(P‘) ,  etc., the difference equations become unconditionally unstable. 
However, using these average values it has been shown (Lax 1954) that the 
equations are stable provided the time mesh satisfies the so-called Courant 
condition 

It is clear from (21) that aHo/aX is discontinuous at X = 0 and as a consequence 
it follows that &/ax and aH/aX must satisfy the jump conditions 

In these dimensionless variables, v2 = H when the particle velocity is equal to the 
propagation speed. In fact this condition never occurs at x = 0; if it holds initially, 
a reflected bore is produced when the main bore meets the change in depth, and 
this second bore establishes values of v and H, with v2 =f= H, at x = 0. This whole 
question of perturbations on sonic conditions behind a shock haa been elucidated 
by M. P. Friedman (1959). This particular feature of the problem is not under 
discussion here and we compute only cases with v2 - H well away from zero. 
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Again the discontinuity in the bottom and corresponding discontinuities in vx 
and H, are not of primary interest here, since we are mainly concerned with the 
motion of the bore as it approaches the shoreline. Accordingly no special account 
of them discontinuities has been taken in (26) and (27). As a consequence we 
expect and indeed find in the results that the numerical solution suffers from 
relatively large truncation errors near X = 0. These effects could be eliminated 
either by smoothing the corner in the bottom profile or by modifying the difference 
equations to include the jump conditions (28). However, the errors introduced in 
this way at X = 0 are not large enough to warrant these detailed corrections for 
the present purposes. 

The net points which enter into the bore fitting procedure are shown in 
figure 2 b. All relevant quantities are known at &, &‘, P‘ and R‘ and the unknowns 
are w(P), H(P),  v(R),  H(R),  V(R) and &+I = $(R). Thus in order to have a deter- 
mined system we must add to the equations of motion and bore conditions two 
additional relations. We use the definition of the bore speed 

and the bore acceleration, obtained by differentiating (24) and using (22)-(25), 

(30) 
d V ( T )  1 -- - - [ [ V H x - ( ~ H ) x ]  

dT 4V 

The equations of motion are approximated at P using backward T-differences and, 
for simplicity, X-diEerences centred at i(& + R) rather than at  P. These implicit 
equations are unconditionally stable and so impose no further restriction on the 
time mesh. The bore conditions (24) and (25) are to be satisfied at R and the 
subsidiary equations (29) and (30) are centred on the bore at +(R+R’). The 
system of equations obtained in this manner is non-linear and is solved by 
iterations. In the form and order in which these equations are used they are: 

X ,  a AX,  (35) 

(36) V ( R )  = V(R’) +? [ W(R) + W(R’)]. 
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Equations (32) and (33) are the bore conditions, equations (34) and (35) are the 
equations of motion and equations (31) and (36) are the difference forms of (29) 
and (30). Here W ( R )  and W(R’) are thelengthy but obvious difference formsof the 
right side of (30). In these evaluations the appropriate X-differences must be 
extrapolated to R and R‘. By this procedure the fitting method yields the correct 
uniform flow over a uniform bottom. Any other procedure seems to require special 
considerations in order to obtain this steady solution. 

The iterations proceed from an initial estimate of V(R),  say V ( R )  = V(R’),  in 
(31). With the [(R) thus determined H,(R) = H,([(R)) is computed from (21) and 
the quantities in (32)-(36) can then be evaluated in order. This procedure is 
repeated, using the latest value of V(R) to start each new iteration, until the 
successive iterates of all quantities are sufficiently close. In actual cornputations 
it is found that the number of iterations required to satisfy a prescribed con- 
vergence criterion decreases with the mesh widths and initial bore strength, and 
increases m the bore gets very close to the shoreline. 

When the iterations have converged the bore may have crossed one or more net 
points; i.e. C(R) > X,,, in figure 2 b. If this is the case, v and H at the intermediate 
net points are evaluated by linear interpolation between their values at P and R. 
To aid in smoothing the calculation the time mesh wm restricted, in addition to 

AX 
2V(R’)’ 

the Courant condition, by 
AT, < - 

In this manner at least two time steps are required for the bore to traverse a mesh 
width and the above interpolation procedure is used at most every other time 
step. For all of the calculations reported here it was observed that this latter 
condition determined AT. 

4. Discussion of the results 
In the calculations a value is chosen for the initial ratio of the bore height to the 

undisturbed depth, v/AO, and the other quantities at  the bore then follow from the 
bore conditions. In the first calculations, the bore is started at x = 0 (or in some 
c m s  one or two mesh lengths to the left) with flow quantities behind the bore 
constant and equal to the values at the bore. The results are shown here for the 
cams with initial values v/ho = 0.25 and ~ / h ,  = 10. The first cam is typical of 
those where v/h, is leas than the critical value 0.6262 so the height 7 increases and 
the bore speed U decrertses at h t  ; also the initial flow behind the bore is subsonic, 
u1 < cl. The second case is typical of strong bores with v/ho above both critical 
values so that 11 decreases and U incremes all the way to the beach; the initial 
flow behind the bore is supersonic, u, > cl. 

The results for the dimensionless bore height v/h,(O) = N and the dimensionless 
bore speed U/J(gh,(O)) = V are shown in figures 3a and 3 b; V ,  indicates the value 
at the shoreline according to the approximate formula. In these calculations, the 
mesh width wm AX = 0.01. Each calculation of the flow up to the arrival of the 
bore ak the shoreline took about 45 min on a Univac. It should be remembered 
that in the dimensionless variables the initial undisturbed depth h,(O) is 1, the 
shomline is at X = 1 and the slope of the beach is 1. Any other depth ho(0), 
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distance x,, or slope a (where ho(0) = mo), can be obtained from the scaling in (20), 
but the initial ratio of bore height to depth is fixed. In the &st case, figure 3 4  
a small oscillation appears on the curve of N near E = 0. This is the effect of the 
truncation error introduced by the discontinuities in the derivatives at X = 0 

4 

2. 

FIQURE 3a. 

--v 
' 8  

\ 6 

" -" 
N 

010 

n 

1.0 

V 

05 

0 
3 1 .o 

5 
Variation of the bore height N and bore velocity V in the caae N(0)  = 0.26. 

5 -  
FIQURE 3b. Variation of the bore height N and bore velocity V in the case N(0)  = 10.0. 

noted in $3. Corresponding disturbances in the other quantities could not be 
accurately detected in the numerical results. The observed oscillation in N has 
a magnitude of about 2 % and is exceptionally large because of the small absolute 
value of N in this cam. As noted in 0 3 it did not seem worthwhile to modify the 
calculation specially to eliminate this particular inaccuracy. 

There is no point in plotting the corresponding values given by the approximate 
formula of $ 2 since they lie almost on the curves. Instead the corresponding values 
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are given in tables 2 a  and 2 b. In the case N ( 0 )  = 0.25, it is interesting to compare 
the predictions of the approximate formula for the maximum r ]  and minimum U 
with the numerical calculations. They are shown in table 3. The numerical 
calculations can be taken with good accuracy to within a mesh width of the 
shoreline. In fact reasonable results are obtained at 6 = 0.996. The limiting values 
of V at X = 1 may be obtained by extrapolation; this gives V = 1.568, for the 
cam N ( 0 )  = 0.25 and V = 13.20, for the case N ( 0 )  = 10.0. Since V varies very 
rapidly in the last few mesh widths, we consider also an indirect method of 
extrapolation derived as follows: 

From the characteristic relation (la), we expect u + 2c to vary little over the 
last few mesh lengths because the variation in t is extremely small. Thus, since 
c 3 0, a convenient prediction of u at the shoreline is the value of u + 2c (or its 

N l l V  U -=- -=- 
5 N v HLl ho JHO Jk7ho) 

Maximum 7 Approximate formula 0.5811 0-2623 0.9457 0-6262 1.461 
Numerical calculation 0.5938 0.2587 0.9363 0.6367 1.469 

Minimum U Approximate formula 0.8863 0.2361 0.8444 2.076 2.604 
Numerical calculation 0.8835 0-2349 0.8401 2.017 2.462 

TABLE 3. Comparison of critical values 

extrapolation) over the last few mesh widths. As h, --f 0, u and U approach the 
same limiting value. The values obtained by this method for V at the shoreline are 
V = 1.681 for the first case, and V = 13.99 for the second case; the corresponding 
values from tables 2 a  and 2 b are 1.659 and 13-93, respectively. In connexion with 
this extrapolation method it may be noted that the approximate characteristic 
rule also reduces approximately to u + 2c = constant for strong bores. 

Turning now to details of the flow behind the bore, the height N and particle 
velocity v are shown for typical times in figures 4a and 4 b. Again the effect of the 
truncation error introduced by the discontinuities at X = 0 is noticeable in 
figure 4a. In this first case, u1 < c1 so that a reflected wave moves back into 
X < 0; in the second case, figure 4b, u1 > c1 so that the flow quantities in X < 0 
remain equal to their initial values. 

Figures 5a and 5b show the results of different starting conditions. The initial 
bore height is kept at N ( 0 )  = 0.25, as for the case shown in figure 3a, but behind 
the bore two different initial distributions of N and v are chosen in place of the 
constant values. First N and v are taken to fall linearly in - 0.1 < X < 0 to of 
their values at the bore, and then remain constant in X < - 0- 1 ; secondly, N and 
v fall in the same distance to 4 their values at the bore. The results for the bore 
height N and bore speed V are shown as curves 2 and 3 in figures 5a and 5b, 
respectively, and compared with the original curves 1 of figure 3a. At the points 
where V is minimum the values of V/, /H,  = U/J(gh,,) are 2.462,2.539, and 2.674, 
for curves 1,2 and 3, respectively. These are reasonably close to each other and to 
the value 2.504 given by the approximate formula in (18). This indicates that the 
formula (19) still applies near the shore even though the starting conditions are 
not the ones assumed in that approximate theory. Of course the values of A will 



314 H. B. Keller, D. A .  Lewine and Q. B. Whitham 

be different for the three different cases shown. Curves 1 have A determined from 
the initial bore height according to $ 2 .  For curve8 2 and 3, the approximate 
formula does not apply in the early stages and some other choice of A must be 

X 
FIGURE 4a. The flow behind the bore: height N and particle velocity v 

in the N(0) = 0.25. 

X 
FIGURE 4b. The flow behind the bore: height N and perticle velocity v 

v in the case N(0) = 10.0. 

made to see if the formula can describe the curves near the shore. It is convenient 
to choose A in each cme so that the minimum of P agrees.The corresponding 
curves are drawn dashed in figures 5a and 5b  using the values in table 1 with the 
appropriate choice of A, which is 0.8004 for curves 2 and 0.6325 for curves 3. 
These show to what extent the motion of the bore depends on the detailed initial 
distribution of N and V, before tending to one of the curves (19) rn the shoreline is 
approached. It is interesting to  8- (figure 5a) that in each caae the curve goes 
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approximately to the value in the uniform region behind the linear profile. This 
might have been expected of course. It should be remarked that these initial 
constant values of N and v in X < - 0 1  do not satisfy the bore conditions 
exactly; for N = 0-225, the bore conditions give v = 0.2627, whereas it was taken 
to be 0.2136; for N = 0.125, the bore conditions give v = 0.1367, whereas it was 
taken to be 0.1186. 

5 
F I U ~  6a. Effect of different starting conditions: bore height N .  

E 
R a m  6b.  Effect of different starting conditions: bore velocity V .  

Finally figures 6 and 7 show on a greatly magnified scale, the oscillations due to 
the truncation errors at X = 0 for the case N(0)  = 0.25. These calculations were 
run until the bore reached ,$ = 0.159 for different mesh sizes and the convergence 
&B AX --f 0 is clearly indicated. It was observed (figure 7) that while the mesh size 
changed by a factor of 8 the value of N at the bore changed by only 4 yo. The value 
AX = 0.01 waa used for the full calculations described above. 
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All these calculations were performed on the A.E.C. Univac at New York 
university. 
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FIQURE 6. Convergence of oscillation in bore height N(5). 
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FIQTJEE 7. Convergence of oscillation in height N ( X ,  t ) .  
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